
I. INTRODUCTION AND PRELIMINARIES

Probalistic functional analysis has emerged as one of the
important mathematical disciplines in view of its role in
analyzing probabilistic models in the applied sciences. The
study of fixed points of random operators forms a central
topic in this area. The Prague school of probabilistic
initiated its study in the 1950. However, the research in
this area flourished after the publication of the survey
article of Bharucha-Reid [5]. Since then many intrusting
random fixed point results and several applications have
appeared in the literature; for example the work of Beg and
Shahazad [2, 3], Lin [13], O'Regan [14], Papageorgiou [15]
Xu [20].

In recent years, the study of random fixed points has
attracted much attention. In particular random iteration
schemes leading to random point of random operators have
been discussed in [6, 7, 8, 10].

Banach (1922) proved Fixed Point Theorem for
contraction mappings in complete metric space. It is well
known as a Banach Fixed point Theorem. Dass and Gupta
[11] generalized Banach’s

Contaction Principle in Metric space. Also Rhoads
(1077) introduced a partial ordering for various definitions
contractive mappings. This objective of the note is to prove
some fixed point theorem for continues contraction mapping
defined by Dass and Gupta [11] and Rhoades [18] in
Dislocated Quasi metric spaces. In the present paper we
establish a fixed point theorem for random operator in
Dislocated Quasi Metric Spaces.

Definition 1 : Let X be a nonempty set and let d: X ×
X → [0, ∝] be a function satisfying following conditions.

(i) d(x, y) = d(y, x) = 0 ⇒ y = x

(ii) d(x, y) ≤ d(x, x) + d(z, y) ∀  x, y, z ∈ X

Then d is called Dislocated Quasi metric Space on X.
If d satisfies d(x, y) = d(y, x) then it is called dislocated
metric space.

Definition 2 : A sequence {Xn} in Dislocated Quasi
Metric Spaces (X, d) is called Cauchy Sequence if for given
ε > 0 there exists n0 ∈ N such that
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∀  m, n > n0 ⇒ d(xm, xn) < ε or d(xn, xm) < ε
i.e, min {d(xm, xn), d(xn, xm)} < ε
Definition 3 : A sequence {Xn} Dislocated Quasi

Convergence to x if

limn → ∝ d(xn, x) = limn → ∝d(x, xn) = 0

In this case x is called a dq limit of {Xn} we write
Xn→X

Definition 4 : A Dislocated Quasi Metric Space (X,d)
is called complete if every Cauchy sequence in it is a dq
convergent.

Definition 5 : Let (X, d) and (Y, d) be dq Metric Spaces
and Let f : X → Y be a function then f is continues to x0 ∈
X, if for each sequence {Xn} which is d1 – q convergent to
x0 in X, the sequence {f(xn)} is d2-q convergent f(x0) in Y.

Definition 6 : Let (X,d) be a dq metric space. A map T
: X → X is called contaction if there exists - ≤ x ≤ 1 such
than

d(Tx, Ty) < λ d(x, y) *x, y ∈X

Throughout this paper, (Ω, Σ) denotes a measurable
space, H A Dislocated Quasi Metric Space, and C is non
empty subset of H.

Measurable function 7 : A function f : Ω → C is said
to be measurable if f –1 (B ∩ C) ∈ Σ for every Borel subset
B of H.

Random operator 8 : A function f : Ω × C → C is said
to be random operator, if F(., X) : Ω → C is measurable for
every X ∈ C.

Continuous Random operator 9 : A random operator
F : Ω × C → c is continuous

Random fixed point (a) : A measurable function g : Ω
→ C is said to be random fixed point of the random

operator F : Ω × C →, if F(t, g(t)) = g(t), ∀  t ∈ Ω.

II. MAIN RESULT 

Theorem 1 : Let (X, d) be a dq metric space and let T : X
→ X be continuous mapping satisfying the following
condition.
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γ + δ < 1).
Then T has a unique fixed point.
Proof : Let {gn} be a sequence of function in X defined

as follows
T (ξ, gn (ξ)) = gn+1 (ξ), Consider,
d(gn(ξ), gn+1 (ξ)) = d(T(ξ, gn-1(ξ), T (ξ, gn(ξ))
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Then d(gn(ξ), gn+1(ξ)) ≤ k d(gn-1(ξ), gn(ξ))
On further decomposing we can write
d(gn-1(ξ), gn(ξ)) ≤ k d(gn-2)(ξ), gn-1(ξ)) and finally we can

write d(gn(ξ), gn+1(ξ)) ≤ k2 d(gn-2)(ξ), gn-1(ξ))
On continuing this process n times
d(g(ξ), gn + 1(ξ)) ≤ k2 d(g0(ξ), g1(ξ))
Since 0 ≤ k ≤ 1 and n → ∞ , kn → 0
Hence {gn (ξ)} is a dislocated Quasi sequence in the complete

dislocated Quasi metric space X.
Thus {gn(ξ)} dislocated Quasi sequence converges to some

{P(ξ)}
Since T is Continous we have
T(ξ, P(ξ)) = limn→0 T(ξ, gn (ξ)) = limn→0 gn+1(ξ) = P(ξ)
Thus  T(ξ, P(ξ)) = P(ξ)

Thus T has fixed point.
The uniqueness is trivial.
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